Extensions 1→N→G→Q→1 with N=C3 and Q=C32×C18

Direct product G=N×Q with N=C3 and Q=C32×C18
dρLabelID
C33×C18486C3^3xC18486,250

Semidirect products G=N:Q with N=C3 and Q=C32×C18
extensionφ:Q→Aut NdρLabelID
C3⋊(C32×C18) = S3×C32×C9φ: C32×C18/C32×C9C2 ⊆ Aut C3162C3:(C3^2xC18)486,221

Non-split extensions G=N.Q with N=C3 and Q=C32×C18
extensionφ:Q→Aut NdρLabelID
C3.1(C32×C18) = C6×C32⋊C9central stem extension (φ=1)162C3.1(C3^2xC18)486,191
C3.2(C32×C18) = C6×C9⋊C9central stem extension (φ=1)486C3.2(C3^2xC18)486,192
C3.3(C32×C18) = C2×C923C3central stem extension (φ=1)162C3.3(C3^2xC18)486,193
C3.4(C32×C18) = C18×He3central stem extension (φ=1)162C3.4(C3^2xC18)486,194
C3.5(C32×C18) = C18×3- 1+2central stem extension (φ=1)162C3.5(C3^2xC18)486,195
C3.6(C32×C18) = C6×C27⋊C3central stem extension (φ=1)162C3.6(C3^2xC18)486,208
C3.7(C32×C18) = C2×C27○He3central stem extension (φ=1)1623C3.7(C3^2xC18)486,209

׿
×
𝔽